The brain and its connections

AJ Larner Consultant Neurologist Walton Centre for Neurology and Neurosurgery Liverpool a.larner@thewaltoncentre.nhs.uk

DHMSA Course 18/02/2023

Suggested reading

- Bennett MR, Hacker PMS. *History of cognitive neuroscience*. Chichester: Wiley-Blackwell, 2008: 199-236
- Cobb M. *The idea of the brain. A history*. London: Profile Books, 2020
- Glickstein M. Neuroscience: a historical introduction. Cambridge, Mass: MIT Press, 2014

Outline

- Neuroanatomy structure: brain, spinal cord, peripheral nerves, muscles
- Neurophysiology function: movement, sensation, cognitive function
- Clinical neurology
- How does the history of neuroscience inform the understanding and treatment of neurological disease?

Method:

 Chronological account encompassing some significant figures and their work: some clinicians, some scientists.

The Ancients

Aristotle (4th century BCE):

 conceived of the heart as the locus of sensation, perception, imagination, thought

Galen (2nd century CE):

 Located these functions to the brain; linked higher mental function to the ventricles

Nemesius (4th century CE):

 Developed the doctrine of ventricular localization of all mental functions: anterior – sensation, imagination; middle – intellect, reason; posterior – motion, memory.

Physiology

Fernel (1542):

Involuntary actions: simple behaviours = reflexes

Descartes (1640s-1650s):

• Animal spirits flowing from the ventricles: "hydraulic model".

Thomas Willis (1621-75)

Thomas Willis (1621-75)

- Cerebri anatome ...(1664): Willis directed the dissection of brains by Richard Lower, illustrated by Christopher Wren; the circle of Willis.
- Coined the term "neurology" the doctrine of the nerves.
- Psychological attributes are functionally dependent on the cortex, not on the ventricles.
- Animal spirits circulate in brain and nerves.
- Hughes JT. *Thomas Willis 1621-1675. His life and work*. London: Royal Society of Medicine Services, 1991

Physiology

Robert Whytt (1750s):

- Questioned fluid flow in thin nerves
- Pupillary reflexes immaterial sentient principle

Luigi Galvani (1790s):

- Nerves conduct electricity like metal wires
- "Animal spirits" rendered obsolete

Sensory and motor nerves

Charles Bell and Francois Magendie (1810-1820s):

- Posterior spinal nerves are sensory
- Anterior spinal nerves are motor
- Anatomical division is functional

Marshall Hall (1830s):

 Spinal cord as a reflex centre, non-sentient, nonvolitional: "reflex arc". Sensory stimulus evokes involuntary motor response.

Sensation

Johannes Müller (1838):

• Sensation is not unitary: orthodoxy of five distinct senses, following Aristotle

Law of specific nerve energy:

- Each modality has characteristic sensory quality.
- Each sensory nerve has a unique responsiveness to a specific (adequate) stimulus.

Electrical nerve impulses

• Emil du Bois-Reymond (1818-1896) discovered the nerve action potential (1848).

 Hermann von Helmholtz (1821-1894) measured nerve conduction velocity (1849): 35-45 m/s.

Movement

• Voluntary:

Motor cortex: Fritsch & Hitzig (1870), Ferrier (1873)

Cerebellum: Flourens (1794-1867)

Basal ganglia

• Clarke E, Jacyna LS. *Nineteenth-century origins of neuroscientific concepts*. Berkeley: University of California Press, 1987

Jean-Martin Charcot (1825-93)

Jean-Martin Charcot (1825-93)

- Methode anatomo-clinique.
- Careful clinical examination during life correlated with post mortem findings (Paris medicine tradition of pathological anatomy – Bichat).
- Advanced ideas of multiple sclerosis and motor neurone disease.
- Stimulated usage of the term "Parkinson's disease", following Parkinson's original report of 1817.
- Goetz CG, Bonduelle M, Gelfand T. Charcot. Constructing neurology. Oxford: Oxford University Press, 1995

John Hughlings Jackson (1835-1911)

John Hughlings Jackson (1835-1911)

- Based on careful clinical observation, inferred a hierarchy of brain centres; localisation
- Jacksonian epilepsy clinical spread permitted inferences about brain structure.
- Positive and negative neurological symptoms
- Critchley M, Critchley EA. John Hughlings Jackson. Father of English neurology. Oxford: Oxford University Press, 1998

Santiago Ramon y Cajal (1852-1934)

Santiago Ramon y Cajal (1852-1934)

• Used Golgi method to study microscopic anatomy of the brain and retina.

• Refuted Golgi's "reticular theory", in favour of the "neurone doctrine".

CS Sherrington (1857-1952)

CS Sherrington (1857-1952)

- Named points of contact between neurones "synapses".
- Reflex contraction and reciprocal inhibition within the spinal cord.
- Spinal reflexes modulated by cortical pathways.
- "Final common pathway".
- The integrative action of the nervous system (1906)

Synaptic transmission

Otto Loewi (1873-1961) + Henry Dale (1874-1968)

- Demonstrated the chemical nature of synaptic transmission:
- in frog heart (Loewi; *Vagus Stoff*)
- in voluntary muscle (Dale; acetylcholine).
- Paved the way for the discovery of other neurotransmitters: noradrenaline, dopamine, glutamate, GABA
- JN Langley: receptors

Electroencephalography (EEG)

- Hans Berger (1873-1941) made the first recording of the human EEG in 1924
- Acknowledged prior work of Richard Caton in Liverpool, who recorded electrical activity in the animal brain in 1875
- Remains an important technique for diagnosis and investigation of neurological disorders such as epilepsy.
- Brazier MAB. A history of the electrical activity of the brain. The first half-century. London: Pitman, 1961.

Nature of the action potential

- Recording from squid giant axon, Alan Hodgkin (1914-98) and Andrew Huxley (1917-2012) developed a model of nerve impulse based on changes in membrane permeability to Na⁺ and K⁺ (1952).
- Hodgkin AL. *The Conduction of the Nervous Impulse*. Liverpool: Liverpool University Press, 1964.
- Specific membrane channels: mutations in which underpin various neurological diseases

Neurophysiology of membranes

 Characterisation of ion channels in excitable membranes (e.g. by patch clamp technique) and of genes which encode specific ion channels and membrane receptors for neurotransmitters.

• Role of long term synaptic potentiation as a possible explanation for learning.

Brain anatomy in vivo

Godfrey Hounsfield (1919-2004):

•Computed tomography of the brain

Brain anatomy in vivo

Peter Mansfield (1933-2017)/Paul Lauterbur:

•Magnetic resonance imaging of the brain

Modern neuroimaging

Enhanced understanding of brain morphology and pathology using increasingly sophisticated imaging techniques:

• Structural: CT, MRI, voxel-based morphometry

 Functional: SPECT, PET, DaTScan, functional MRI

"Equipotentiality"

 "Equipotentiality": preservation of any region may permit acquisition of a task

Flourens (1820s)

Karl Lashley (1890-1958):

 in rats, brain volume removed rather than its specific location determined spatial learning memory – law of mass action: generalised ability to learn complex tasks

Localisation

Gall (1791):

 "organology"- each psychical and moral faculty possessed its own cortical organ

Spurzheim:

"phrenology", analysis by examining the external contours of the skull ("cranioscopy").

Ferrier (1873)

"localise phrenologically the organic centres of various mental endowments"

Localisation: Language function

Paul Broca (1824-80), 1861:

 patient M. Leborgne ("Tan") with non-fluent aphasia with preserved comprehension – focal lesion of third frontal convolution

Carl Wernicke (1848-1904), 1874:

 patients with fluent aphasia with impaired comprehension – lesion of superior temporal lobe

Localisation: Perceptual function (vision)

- Tatsuji Inouye (1881-1976) Russo-Japanese war 1905
- Gordon Holmes (1876-1965) World War I
- Mapped visual field defects and correlated with occipital lobe gunshot injuries (X-rays, surgery).
- Macula represented at the occipital pole; sup/inf fields map to inf/sup calcarine fissure.
- McDonald I. *Brain* 2007; 130: 288-98

Localisation: Memory function

- Patient 'HM': Henry Molaison (1926-2008)
- Anterior bilateral temporal lobectomy for intractable epilepsy 1953
- Profound anterograde memory impairment studied by Brenda Milner
- Importance of the hippocampus in memory
- HM was a research subject for > 50 years, shed much light on brain mechanisms of memory
- Corkin S. *Permanent present tense. The man with no memory, and what he taught the world*. London: Allen Lane, 2013
- Dittrich L. *Patient H.M. A story of memory, madness and family secrets*. London: Chatto & Windus, 2016

Wilder Penfield (1891-1976) and Herbert Jasper (1906-99)

- Stimulated brain prior to neurosurgery in awake patients
- Mapped sensory and motor cortices: cortical homunculus
- Jasper H, Penfield W. *Epilepsy and the Functional Anatomy of the Human Brain.* 2nd edition. Little, Brown and Co., 1954.

Neurobiology of disease

Neurobiology of disease

Traumatic brain injury Epilepsy Parkinson's disease Alzheimer's disease

Traumatic brain injury

Ramon y Cajal:

 Lack of neuroregeneration in mammalian brain, contrast with potential for regeneration in peripheral nervous system, and in non-mammalian organisms

Current understanding:

- regenerative capacity is present, substrate hostile to regeneration: scar, neuroinhibitory molecules
- Treatment: change the substrate: olfactory ensheathing cells; activate residual connections extrinsically (implantable electrodes)

Epilepsy

Disorder of brain electrical activity:

- Hypersynchronous discharges of brain tissue, focal or generalised, causing paroxysmal motor, sensory, psychic symptoms
- Many causes: brain injury, infection, neurodegeneration
- Treatment: anti-epileptic drugs, many of which act on ions channels to modulate electrical activity

Parkinson's disease

Disorder of movement:

- Imparied brain neurochemistry: deficiency of dopaminergic neurotransmission through the nigrostriatal tract (Hornykiewicz)
- Treatment: repletion of neurotransmitter through provision of pro-drug, levodopa, metabolised in situ to dopamine (Cotzias); and/or drugs which act at dopamine receptors

Alzheimer's disease

Disorder of brain connectivity:

- Proteinopathy: accumulation of proteins, amyloid beta peptide in plaques, tau in hyperphosphorylated state in neurofibrillary tangles. Disordered axonal transport, synaptic failure.
- Secondary disorder of brain neurochemistry: cholinergic neurotransmission through the basal forebrain

Treatment:

- Symptomatic: repletion of neurotransmitter through provision of cholinesterase enzyme inhibition
- Disease modifying: prevention of deposition/synthesis of amyloid beta peptide, hyperphosphorylated tau
- Not yet achieved (*contra* lecanemab)

• Thank you!

• Questions?